Glutamate receptors: the cause or cure in perinatal white matter injury?
نویسنده
چکیده
Glutamate toxicity from hypoxia-ischaemia during the perinatal period causes white matter injury that can result in long-term motor and intellectual disability. Blocking ionotropic glutamate receptors (GluRs) has been shown to inhibit oligodendrocyte injury in vitro, but GluR antagonists have not yet proven helpful in clinical studies. The opposite approach of activating GluRs on developing oligodendrocytes shows promise in experimental studies on rodents as reported by Jartzie et al., in this issue. Group I metabotropic glutamate receptors (mGluRs) are expressed transiently on developing oligodendrocytes in humans during the perinatal period, and the blood-brain-barrier permeable agonist of group I mGluRs, 1-aminocyclopentane-trans-1,3-dicarboxylic acid (ACPD), reduces white matter damage significantly in a rat model of perinatal hypoxia-ischaemia. The results suggest drugs activating this class of GluRs could provide a new therapeutic approach for preventing cerebral palsy and other neurological consequences of diffuse white matter injury in premature infants.
منابع مشابه
Developmental expression of N-methyl-D-aspartate (NMDA) receptor subunits in human white and gray matter: potential mechanism of increased vulnerability in the immature brain.
The pathophysiology of perinatal brain injury is multifactorial and involves hypoxia-ischemia (HI) and inflammation. N-methyl-d-aspartate receptors (NMDAR) are present on neurons and glia in immature rodents, and NMDAR antagonists are protective in HI models. To enhance clinical translation of rodent data, we examined protein expression of 6 NMDAR subunits in postmortem human brains without inj...
متن کاملXenon provides short-term neuroprotection in neonatal rats when administered after hypoxia-ischemia.
BACKGROUND AND PURPOSE Brain injury after hypoxic-ischemic insults evolves via an apoptotic/necrotic cascade. Glutamate over release and N-methyl-d-aspartate (NMDA) receptor over activation (excitotoxicity) are believed to trigger this process. Xenon is a nontoxic anesthetic gas that reduces neurotransmitter release and functionally antagonizes NMDA receptors. Administering xenon to hypoxic-isc...
متن کاملNMDA receptor blockade with memantine attenuates white matter injury in a rat model of periventricular leukomalacia.
Hypoxia-ischemia (H/I) in the premature infant leads to white matter injury termed periventricular leukomalacia (PVL), the leading cause of subsequent neurological deficits. Glutamatergic excitotoxicity in white matter oligodendrocytes (OLs) mediated by cell surface glutamate receptors (GluRs) of the AMPA subtype has been demonstrated as one factor in this injury. Recently, it has been shown th...
متن کاملNovel injury mechanism in anoxia and trauma of spinal cord white matter: glutamate release via reverse Na+-dependent glutamate transport.
Spinal cord injury is a devastating condition, with much of the clinical disability resulting from disruption of white matter tracts. Recent reports suggest a component of glutamate excitotoxicity in spinal cord injury. In this study, the role of glutamate and mechanism of release of this excitotoxin were investigated in rat dorsal column slices subjected to 60 min of anoxia or 15 sec of mechan...
متن کاملGlutamate and ATP signalling in white matter pathology.
Excessive signalling by excitatory neurotransmitters like glutamate and ATP can be deleterious to neurons and oligodendroglia, and cause disease. In particular, sustained activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate and N-methyl-d-aspartate (NMDA) receptors damages oligodendrocytes, a feature that depends entirely on Ca(2+) overload of the cytoplasm and tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron glia biology
دوره 6 4 شماره
صفحات -
تاریخ انتشار 2010